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VARIATIONAL BOUNDS IN POSITRON-ATOM SCATTERING

Richard J. Drachman
NASA Laboratory for Theoretical Studies
Goddard Space Flight Center
Greenbelt, Maryland
We have previously applied the complete first-order adiabatic

correlation function of Dalgarno and Lynn to the problem of low-energy
elastic positron scattering by hydrogen and helium atoms. This approach
is now extended to yield rigorous lower bounds on the scattering phase
shifts in the case of hydrogen and ''quasi-bounds'' for helium. In addition,
the positron annihilation rate in helium is re-evaluated, and lower values
are now found, with the enhancement factor over the Dirac rate varying

between 1.5 and 1.8. Some comparisons are made between the present method

and other recent work.



I. Introduction

In two recent papers'’?, the problem of low-energy elastic
scattering of positrons from simple atoms (hydrogen and helium) has
been treated in a modified adiabatic approximation. The method con-
sisted in assuming that the optical potential® is well represented by
the positlon-dependent second-order energy shift in the ground state
of the target atom, due to the electric field of the positron*. Two
novel features were introduced in these calculations. Firstly, the
exact second-order potential® was used in place of an approximate form®.
Secondly, suppression of the short-range parts of the potential was
accomplished by the use of a semi-empirical energyvindependent parameter,
which served to reduce the spherical (monopole) distortion of the atom
which would otherwise dominate as the positron approached the nucleus.

In the case of positron-hydrogen scatteringl, 904, suppression of
the monopole was found to give essentially exact agreement with the
definitive S-wave results of Schwartz® from zero energy up to the posi-
troniun formation threshold. Higher partial waves gave smaller phase-shifts
than the best present estimates’, presumably due to the inclusion of
insufficient amounts of virtual positronium in the wave function.

The positron-helium calculation® was repeated for various values of
monopole suppression, and suffered from the use of the shielded hydrogenic
approximation for the atomic ground-state. But since no exact results
exist it correctness cannot yet be evaluated®. The only existing experi-

ment® measures the momentum transfer cross-section near the positronium




-3 -
formation threhold, and seems to disagree strongly.

The results for hydrogen} seem to imply that the adiabatic wave
function contains, to a considerable extent, the significant physics of
low-energy positron scattering. Nevertheless, it is disturbing that a
semi-empirical. parameter is required, and also that no extremum principle
or bound is contained in the results. The purpose of the present work! ©
is to use the adiabatic wave function in such a way as to obtain rigorous
lower bounds to the phase shifts for et - H scattering and ”quasi—rigorous”
lower bounds in the e’ - He case.

In Section II, the lower bound principle of Gailitis!? is adapted

to the adiabatic type of trial function for et

~ H scattering. In

Section III, a simple scale change gives the corresponding equations for
et - He scattering, and the et annihilation rate in helium is also calcu-
lated. Results for these two cases are given and discussed in Section IV.
In Section V we clarify the relations between the present method and 6ther
recent work. Two Appendices contain details of the calculation.

ITI. Formulation and Positron-Hydrogen Scattering.

We are interested here in obtaining approximate solutions to the
Positron-atom elastic scattering problem. The energy will be resiricted
80 as to forbid any re-arrangement or inelastic processes, the lowest of
which is real positronium formation, occurring above 6.8eV in hydrogen
and 17.8eV in helium. To apply the lower bound principle of Gailitis!?,

it is sufficient in this energy range to use a trial scattering function

of the form



, X
X (1)

Here, X is the position vector of the positron, r represents the atomic
electrons, ¢ is the ground-state wave function of the target atom and X
is the scattering function for the positron of momentum E, which must
approach the correct asymptotic form as x - ». The distortion or polar-
ization of the target by the incoming positron - the closed-channel part

of the wave function - is approximately represented by §, which satisfies

the conditions!@

jdga gb(&z_) @ (J\I;J‘.;g) oy O) for all x, (2a)

and

gg P 422 1@ (&,%‘]2 L oo,

(2b)
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Then the two functions x and § are to be determined. The resulting

form of X yields partial-wave phase shifts sL(k) which satisfy the

inequality tan 6§, (k) < tan § (k) (exact), for all energies below any
L L

resonances that might occur.

The Hamiltonian for e - H scattering is

H = Hn_“' H. +\/

3 (3)

where HIL:— [Vni-}-Z//l._x)

and

where we have set 'h2/ 2me -1, e® - 2, with energies in Rydbergs and

lengths in units of a.s the Bohr radius. The correlation function is



P &%) = F®) G&BE) P,
()

where F is to contain short-range non-adiabatic modifications to the

adiabatic correlation function G which satisfies the first-order equation5

(G, K] o= [V—- <1, o

[Throughout this paper the bracket notation will represent expectation

value in the ground state, ie
VY = 54% FMV(HE) PO (6)

From Eq. (5), the function G is determined to within an arbitrary additive
function of x, which may be chosen to make <G> vanish. With this choice,
Eq. (4) is consistent with Eq. (2a).

If we use standard veriational methods'3 and allow x and F to undergo
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free, independent variation, we obtain the following two coupled

equations:

([H-E)[* + FE1) =2,

(G IHEI[*+FGL)=C, (T

where E = E_ + k2 and (Hr - EO)¢(r) — 0. Simple operations, including
commitation of Hr and G and use of Eq. (5), yield the following coupled

differential equations for ¥ and F:

[ k- Ve 1% = % F, )

(8b)

A .
[N (74) +Vam Vo =W = Vedz | F =X

The ''potentials' appearing in Eq. (8) are defined as follows:



V@)= <G V), (p=123);

W (@)= — LG % GY;
Ny = <G>

(9)

\/N(oc)—:—-%—zcl .
Using the exact analytical form of G, given in elliptical coordinates
by Dalgarno and Lymn®, we have numerically evaluated'? all the functions
defined in Eq. (9). The evaluation is outlined in Appendix A, and in
Table I the potentials are tabulated.
The limiting forms of these potentials can be found analytically for
small and large x, and are useful for starting the solutions of Eq. (8)

and also to check their numerical evaluation. (See Appendix A) We obtain,

for x - 0

P<
¢

2 [=-1]

—] + O (x?)

<
¢

'~ gL_
\/3 ~ o4 Vi (10)
5 R
N~ -5
4 -
|0
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and. for x - =

V, and W - O exponentially,
v, v =[x« 13t

V, ~ = [ 213/ @xT) w1113/ a1)

N~ [43/(82%) +107/(ex)+ ]
V, ~ [43/@x*) + 32 (4xT) ]

The solution of the coupled Egs. (8) is outlined in Appendix B, and
the results are discussed in Section IV. In Fig. 1 we have plotted the
S-wave zero-energy solutions for the two functions X and F - ¥, as well
as the ”suppressionfactort T(x) - F/x. One can see the natural occurrence
of the expected short-range suppression of G. An unexpected small enhance-

ment also occurs for x > 4.
ITI. Positron-Helium Scattering

To extend the results of the preceding Section to the case of positron
scattering from the ground state of helium, we interpret the correlation

function of Eq. (4) as depending on two electronic coordinates, ie

——

@ (Ji.f, Az, ’25) = F (%) - ({’-4)-/}2) 9,5) ¢CA')'I21 (12)

where ¢ is the properly antisymmetric ground-state atomic wave function,
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and G 1s symmetric in the electronic coordinates.

The Hamiltonian for et - He scattering is

H = H12 T HI*VD

(13)

where 2
2 2 4 4 ] +
_ - v, + I~ + — _ 2
Hp = (97 % + %+ | Y izza]
2
Hx—': - Vx' P/
and

v: V(i) -}-\/(2)

where

(<) S I
vi=2lx T pex .

The assumption that G is the first-order adiabatic correlation function

req_uires2

[ G, Hu] Pran) = [\/“ SOARCIZIVN , 4
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where the bracket notation of Eq. (6) is extended to include integration

over r. and ro.
b} ~2

. The formal equations to be solved are identical to Eq. (7) where

E-E_ + k% and (H,o - EO)¢(r1, rs) - 0. Using Eq. (14) one obtains the

following coupled equations:

[V’#,fr{z — <\/>1 X = <G—\/> F, (158)

[ (G (w2ek) + {GV) = <GV) + NGACY
(15b)

+ VG- y;} F = <&v) XK.

If it were possible to solve Eq. (14) exactly, and to evaluate all
the bracketed expressions in Eq. (15), the resulting phase shifts would
satisfy the rigorous lower bound theorem. Since no exact solution for
- the helium atom ground state is known, one must use an approximate form
for ¢(r1, ro). We have used the simple, shielded hydrogenic form ¢(r1, rs) =

¢(r1)¢(r2)s, where S is a singlet, antisymmetric spin function, and



32 - - BN '
(l/'(/")'-'F n-e > (16)

Nj~

where B is an effective charge. Since this function is not an exact
eigenfunction of H,,, the procedure leading to Eq. (15) is itself not

really consistent. To the extent that these inconsistencies may be ignored

however, the solutions of Eq. (15) will yield lower bounds to tan by,5 we

call these ''quasi-bounds''.

Using this form of ¢, it is consistent with Eq. (1L) to assume

independent distortion of the two electroms.
G (&4, L, 05) =G (Qu%) + G (22,) = G+ G,. QD

Eq. (14) then simplifies to the form

[G., 7] ¢ = [(v‘”> . \/“’)J ey

(< =11) (18)
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where bracketed quantities now refer to single integrals, ie
(L) i3 q} n \/ ) (A

Again, one must set <Gi> - O to satisfy Eq. (2a). With this condition
satisfied, one can immediately re-write Eq. (15) in terms of single

integral quantities:

[T5e R -2V [ = 2VLF, (202)

[N (TR + Vs —W -V L1r=vu.

(20v)

A1l the ''potentials'' used in Eq. (20) have the formal definitions of

. Eq. (9), but with ¢(r) replaced by ¢(r). The factors of 2 appearing in
Eq. (20a) are due to the superimposed effects of the two electrons. In
Eq. (20b), there is an additional term, -NV., which did not appear for

1

hydrogen, Eq. (8b). This comes from the third-order term in Eg. (15b),



-1 -

@S = (G & (VWD)
= (G +{&GVT)

) 2 [Q))
REWILY &> + <& DA > (1)
42 <Gy LGN T +2 465 {6V 7).

The last two terms vanish, and the net result is
2 ) |
<GV>‘2[\/3 NV‘l (22)

It has been noted® that a simple change of scale converts Eq. (18)
into its hydrogen equivalent, Eq. (5). Specifically, let y = pr and

v _ gx. Then Eq. (18) becomes

~
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(23)
where
2 (3. 28 ,'__.___‘._,_'X
One sees immediately from Egs. (23) and (5) that
B Gy (%) = Gy (Ly). (o

. 2 2 3
Also, since VHe(f,’ ’}5) = BVH(Z’ ,Y,)’ and. ¢He(r)d3£: ¢H(y)d y one can relate
all the helium potentials of Eq. (20) to the hydrogen potentials of Eq. (8)

G () —> BT Ve, ()
N () —> @-2 N (),

\/N (x) — Pq Vi (W),
W (® — W)

(25)
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The simplest way to make use of these scaling laws is to change variables

throughout Eq. (20):

[vPek = ZVIN = =M F, (262)

[ (V +*’2 \/1) +V, "p"\/ ~W - v'V ll:

- AL

(26b)

Here k'_ k/g, V2

Vs, and all the potentisls are the hydrogen functions
In terms of v. These equations can be treated just like those appearing
in the hydrogen problem, as discussed in Appendix B, and the results are
discussed in Section IV. As indicated previouslyz, the value B - %%
which minimizes the energy expectation value gives an unsatisfactory value
(1.11) for the polarizability of helium. This quantity appears in the
present theory as lim [2x* Vo(x)] = 9B 4. With only a slight change in
the energy, one can adjust the polarizability to the experimental value®
of 1.376, by setting B = 1.5992. This value has been used throughout the
present work.

We have previously*® used the non-varistionsl et - He wave functions

t0o calculate Zk’ the number of atomic electrons which are effective in
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annihilating a positron of momentum k. (For planewave positrons

and omitting atomic distortion, Zk ~ 2). In terms of our type of

wave function,

L7, = fd% (d2oc NACKE XN

(27)
= Sd?’oc G [ 1%+ F G )17+ [F124GD).

Following Ref. 15, we assume that only the L - O scattering function
differs significantly from its planewave form, and that for L > O the
ratio of closed-channel to open-channel functions is well approximated

by the zero-energy suppression function T. With these approximations,

one can write

Co

Z, = (2—5—)1 S dv & [(Vo + 30 G (¥, ‘yf’)): 92N (u-)]

[¢}

3
H
e

—~

v 4 Sjr e

-y

vz M (V)P _ /}j( %{)] | (28)
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where M(-U_‘) — [1 F G‘(‘Z,E{-)]z + TQ N(U‘) o

Here v - Bx, Uo and go are the S-wave parts of X and F (see Eq. Bl).
The correlation functions used here [G(X? I) and N(v)] are scaled
appropriately for helium. At k = O the second integral in Eq. (28)
vanishes since no higher L-values contribute. For k *+ O the assumptions
made here should be quite good; in Ref. 15 we have estimated that an
error of less than 24 is incurred in the values of Zk' In Table IT the
results are given for values of the energy up to the positroniun thres-
hold, in comparison with the larger values of Zk previously obtained!®.

The difference between the present results and those obtained
previously is traceable partly to the fact that the present calculation
gives less attraction than did the non-variational method®3 , and hence
the positron is pulled inward to a smaller degree. A larger effect is
the difference between the ''correlation function'' M defined in Eq. (28)
and the monopole - suppressed function Y used in Ref. (15). These two
functions are compared in Table ITIL and one can see that, except at very
small distances from the nucleus, M < Y. To examine these two effects
quantitatively, we have re-computed % Zk at zero energy using both M and
Y, as well as both variational and non-variational scattering functions.
By far the largest effect is produced by replacing M by Y, outweighing
the effect of interchanging the two forms of U by a factor of 5. Since
neither M nor Y is exact, this result constitutes a warning against taking
the annihilation results too seriously. It is interesting, however, that

the present calculation agrees fairly well at zero energy with the experi-
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mental result of Falk et all® for thermal positrons of Zk - 3.78 + 0.17.
IV. BScattering Results and Discussion k

The et - H S-wave scattering phase shifts 50 were computed numerically
as discussed in Appendix B, where the method of treating the asymptotic
behavior of the closed-channel is discussed. This involves inward
integration from a point X, in the asymptotic region to an inftermediate
point ;. In Table IV the sensitivity of tan 50 to the choice of X
and X is shown for low and high-energy positrons, confirming the stability
of the numerical solutions.

In Table V the et - H S-wave phase shifts (and, at k = O, the scattering
length) are shown, along with the results of Schwartz®. To assess the
quality of the present work, we compute the quantity A, the difference
between tan 60 and the value of tan 60 obtained with an undistorted atomic
wave function. This "Hartree' result is also given in Table V. The
figure of merit Q(k).= A (variational)/pA (Schwartz), measures how much of
the distortion or polarization has been accounted for by our method. It
is most interesting that Q =~ 90%, almost independent of energy. The
lower bound results of Hahn and Spruch®” have somewhat lower Q-values,
as shown in the Table. We consider it a success of the present method
that the results compare well with the many-parameter, many- { variational
results of Ref. 17. Their method has the considerable advantage, however,
of being capable of systematic improvement, by the addition of more terms.
The results can also be convincingly extrapolated, and give good agreement
with those of Schwartz®.

In Table VI the S-wave scattering results for et - He are presented.
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Along with the ”quasi—rigorous” lower bounds obtained here, we show

the ''Hartree' results, obtained from a two-term analytic form®
approximating the helium ground-state potential,and the non-variational
results®. Since no definitive calculation exists in this case, we have
computed the figure of merit @ assuming that GNV is exact. These
Q-values are smaller than those obtained for hydrogen, but are also
nearly constant. It is not possible to make any further statements about

the "correct'' values for the S-wave e+

- He phase shifts from the com-
parison of the quasi-variational and non-variational results.

The possibility that a bound et - ¢ - P exists has been eliminated
by an extensive variational calculation*® which showed that for a
"positron' of mass m > 2. 625 such a bound system does occur. As a
further test of the present method, we have calculated this critical mass
by looking for the appearance of a node in the S-wave zero-energy scattering
function, corresponding to a scattering lenght a = + ». One modifies
Eq. (8) by dividing all terms involving Vi by the ”positron” mass m. This
is equivalent to multiplying the potentials V1’ Vz, Va by m, and adjust-
ing the asymptotic conditions in an obvious way. We find the critical
mass to be 2.79, and since our method gives an upper bound this agrees
with the result of Ref. 18.

The present method is not expected to be as good for L > O as for
L - O, since even the non-variational results! underestimate the P- and
D-wave phase-shifts at the higher energies. This defect seems to be

associated with a lack of sufficient virtual positronium in the wave

function. Support for this is the success of Bransden's P-wave results'®
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at high energy. More recent results®® indicate that Just above the
threshold for positronium formation, P-waves dominate over S-waves in
the pick-up process, implying that below threshold neglect of positronium
is less serious for S-waves. In any case, we show our L _ 1, et - H
results in Table VII, where they are compared with the lower-bound and
extrapolated results of Kleinman et al®!.
V. Comparison with Other Methods
We will now describe briefly some other methods which resemble the
present work, hoping that some clarification will result. The field of
low-energy positron scattering suffers from some lack of precision in
terminology and some overlapping of approximations, which may make it
difficult to evaluate the work reported here without a description of
the competing methods. The following short review is not complete, but
it may aid the orientation of the reader.
1. The non-variational (polarized orbital) method! uses the form

of scattering function given in Egs. (1) and (4) with the

additional restriction F(E):: x(i). Since it is non-variational,

however, the single unknown function ¥ is determined by simply

projecting the Schrddinger equation onto the open-channel

part of i:

< [H —E1[1+ G X =0 (29)
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This leads to the differential equation
[V2+/&z] N~ VitV X =0, (30)

whose solutions gives the phase shifts. In the absence of
an applicable lower bound principle it is difficult to gauge
the error in the phase shifts obtained from Eq. (30).

2. The same polarized orbital wave function can be employed
variationally. The same procedure which leads to Eq. (7)

when X and F are independently varied, leads now to

(31)

{AGAH-E1[1 763 K= ©
since F = X. This gives the differential equation

G d (™=
[V2+/¥{117<~[A1+N] ‘.\/14‘-\/2 +V3 +W+VNEB-Q]7< C’7 (32)
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whose solutions provide approximate phase shifts which

are lower bounds to the exact ones. Unfortunately, these
approximate phase shifts are very low (a = - 1.0), since
the large, short-range repulsion represented by W, and

the reduction in Vo caused by the factor (1 4 N) ' more
than overcome the attraction added by Vz. It is likely
that removing some or all of the monopole part of G, as
was done non-variationally in Ref. 1, would improve the
results considerable. If G were replaced by G - (1 - a)Go,

the potentials appearing in Eq. (32) would be modified as

follows:
N— N— (1-%INo
W— W — (1=&)Wo
Vo = Ny — =) Ve
N, — Vi

(33)
Vy —> V, — (1= Ve >
V; — V — U"‘okﬂ\/ao -2 (A~ OQP

where, for example, N_ = <G§>, and P = <GO(G - GO) (v - VO)>.
In Eq. (33%), the parameter o represents the fraction of
adiabatic monopole distortion being retained; ¢ = O is

what we have called! ''full monopole suppression”. The best

value of o, for each L and k, is to be determined variationally.
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Eq. (32) is integrated for seversl values of g, and the
value which maximizes the phase shifts is retained. The
monopole terms (with subscript O) are easily evaluated
in spherical coordinates, while the remaining terms are
knawwn in elliptical coordinates, except for the last
term in Va. The gquantity P is difficult to compute in
either set of co-ordinates, but it might be approximated
using the multipole expansions for G and V. This method
has not been used up to the present time.
Callaway et al®® have made some modifications to Eq. (32)
and arrive at another optical potential which they call the
extended polarization potential. Although the results
obtained are poor, the new potential has considerable
physical interest.

To derive the result of Ref. (22), one first neglects
all terms which are formally of higher than second order in
the perturbation V. This eliminates from Eq. (32) all re-
ference to N and Vs, and leaves us with Eq. (30) modified
by the addition of the two second-order non-adiabatic
potentials W Vﬁgi . Further arguments in Ref. (22) are
used to Justify a certain normalization of the scattering
function, but in essence one next introduces a new function

X by the definition

o= (1= EN)R, (54)
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and a differential equation for X is derived by direct
substitution. Again neglecting terms higher than second

order, one obtains the equation
g 21— Ny :
[V +/2<&’\/\ '—[V1+\/2+\/DX’X—'C) (35)

where V, is the "distortion potential <(VXG)2> appearing
in Appendix A. From Egs. (A}) and (10) we find that Vy =1
at x = 0. Thus, as Callaway et al®2 have emphasized, the
distortion potential cancels the polarization potential Vo
at the origin, and hence its inclusion seems to serve the
same purpose as does monopole suppressiont. Unfortunately
VD is fairly long range, decreasing like x © for large X,

while V20 exponentially decreases. The equivalence of these
two ways of suppressing excessive attraction is limited to
small x, and consequently Eq. (25) gives far too much re-

pulsion; the scattering length is®%

a = - 0.783, even worse
than the result of Eq. (32).

. We have previously reported 102 5 method of obtaining lower
bounds to the phase shifts, which is simpler than that of the
present work and not much different in its results. In
essence it is a hybrid between the present method, which

independently varies two functions and obtains coupled dif-

ferential equations, and the method of Eq. (31) which varies
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only one function.

In this method, one again uses a trial function of

the type represented by Egs. (1) and (4), with

) (36)

where T(x) is some function which approaches unity for
large x and decreases for small x. It is to contain
adjustable constants23, and is designed to suppress the
short-range correlation. Variation on X leads to the

following equation, analogous to Eq. (31):

<U+TGMH—E1U+TG]>'7<= C.

(37)

The optical potential of Eq. (32) is modified, and the
lower bound phase shifts are solutions of the differential

equation
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[v’}){ll% - L)‘ *'\'ZN\:( L\/‘ ¥ (z'r.—'\‘i) \/;_

. g\ d
y T L\/s”\"") v (TZVN'ZTT N»E{i o

o (TN PTG R =es

which is seen to reduce to Eq. (32) if T _ 1. TFor k = O,

L - O scattering, the optimum form of T would be that

shown in Fig. 1, where T _ F/X, while F and X were numerically
obtained. Fork¥ O, however, X and F both are oscillatory but
their zeroces do not generally coincide, and one must use a
smoothed. approximate form for T, as has been done for the
annihilation problem in Section III. It is also possible to
combine the monopole suppression method with the present method.
In that case, the constant g would measure the amount of mono-
pole correlation retained, while the function T would be capable
of making adjustments in the remaining parts of the correlation
function.

. Two interesting modifications of the close-coupling approximation
have been introduced recently. They are quite close in
approach to the present coupled-equation method.

a. Damburg and Karule24, notiecing that the close-coupling
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method fails to give the correct asymptotic dipole
polarizebility, have proposed a trial function which
is equivalent to our Egs. (1) and (4), with a dif-

ferent form for G:

GueD= (L RED,

(cor =A%),

The motivation for this choice is clear: comparing

Eq. (39) with Eq.(A8), one sees that G_ correctly

DK
describes the asymptotic form of the adiabatic cor-
relation function, as far as the coordinates of the
electron (r,7) are concerned, and since F(x) can be

freely varied, the solutions of the resulting coupled
equations will be identical, for large x, to those

of Bq. (8). Eq. (39) is separable in r, 7, X, however,
and hence does not give the same short-range dipole
correlation as does as does the Dalgarno-Lynn function G.
In addition, each multipole term in the correlation
function would require another coupled equation (as is

the case for ordinary close-coupling). In return one
gains enormously in the simplicity of the potentials which
must be used; all the potentials in this method can be
evaluated analytically, while some reduce trivially to

constants. The method is promising, but no numerical
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results are available yet.

b. Perkins®> has made a modification starting from
a conventional close-coupling expansion containing
l1s - 2 - 3d states. Noting that, since only one
term of each angular symmetry is retained,the ortho-
gonality of closed and open channels [Eq. (2a)] is

assured, he has modified the forms of the 2p and 3d

functions as follows

)

-Sn
¢’2P’ = }L e ¢ pﬂ__

(40)
N

2
qtadlf = ‘jL 63. ? FDZ °

The ususal coupled differential equations of close -
coupling are solved numerically, but now two additional
non-linear parameters, § and T, are adjusted to maximize
the phase shifts. The results are much better than

the corresponding ummodified close-coupling results,
although the exact asymptotic polarizability is not
achievable. The method can be extended to include higher
4-values with the usual difficulty that more coupled
equations are then required. Without generalizing the
basis functions considerably, one would not expect the
procedure to converge toward the exact wave function, but
the lower bound theorem holds and offers the usual estimate

of quality.
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6. An interesting general formation was recently presentedzs,
which uses numerical solutions of the two-center problem
in the adiabatic approximation, and which may prove
applicable to positron scattering. Similarities with
our method include generalizations of our VN and W. The
binding energy of the e+ - e - et molecule was computed
as an example, but no scattering results were given.
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Appendix A. Evaluation of the Potentials

The analytic solution of Eq. (5) was given by Dalgarno and L;y‘n.n5

and has the form

G = AG) [aep] v (1+ ) An )

+ (14—%5) QM)+ _Cf—cx)J (a1)

where A (x) — .’2_ L (1+1)Q‘2x‘— 1 l R

QEp) = Ei(xp-1) = 2n (12+) |
_ e[ E (amea) =ln o]

and Ei(-Z) = - I dy e_y/y. In terms of these elliptical coordinates,
Z

r-=x{n s1). and cos M= (L 4 a)/(A 4+ 1), where T is the angle between

2
. 2 2
x and r. The potential V - = (1 4

~ ~ p,"

)\f] ,the bracket notation takes the

_ _x(np)
CICAY )R S 53/« (X)) ),

1
(a2)
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and we may determine E(X) by requiring <G> .. O, obtaining
o~ . -2K | LY x—i‘-‘

where gny = 0.5772....., Euler's constant. The solubility of Eq. (5)
depended on its additive separability in elliptical coordinates. For
the same reason, it is possible to evaluate most of the potentials
defined in Eq. (9) in terms of one-dimensional integrals. Since, how-
ever, the important function W cannot be reduced in this way, we have
numerically evaluated all the potentials uniformly by the use of
Gaussian quadrature in two dimensions. We have confirmed the accuracy
of this procedure in three ways: We have evaluated <V>, <G>, and <GV>
in elliptical coordinates, using our numerical method, and compared the
results with the known values, obtaining excellent agreement. In particular,
<G> never differs from zero by more than about 10—7; and we feel that this
figure measures the accuracy of the two-dimensional integrals.

The two non-adiabatic terms, VN and W, present additional problems.

To evaluate W directly would involve the operation Vig, which would

give a very intricate analytic expression. Instead, we have re-written

the expression for W in the form




(A4)

where V, = <(ZXQ)2> is the ''distortion potential'' employed in Ref. 22,

and discussed here in Section V. The function VD involves both x and

n components of the gradient (with r held fixed), while VN only requires
the x component. Both components were found analytically and inserted into
the numerical double integration, while the first derivative of V_ needed

N
in Eq. (A4) was gotten by numerical differentiation of V- All three
terms in Bq. (AL4) have asymptotic inverse-power behavior, with x © as
the leading term; these all cancel leaving short-range (exponential)

terms dominant.

In Section III we require the value of G(x, x), ie, G(r, x) evaluated
at r — x. In elliptical coordinates this relation becomes A — u = 1,
since then r — x and cos 7 = 1. Care is required in evaluating Q(X, l),

since its first two terms are singular. Letting u =1 - ¢ and expanding

the exponential integral about ¢ - O, we have



N e dne - B )
Q (2, 1-€)y A (rex) - €% dne-€7| ) ’Z], (85)

and the limit ¢ —» o can be taken. The final result is

ey (o) €t~

42 g -2’1)+e{_2'1 —'—+—23C)ﬁ (A6)
|- = 2

This is the function which, properly scaled, is used in the et - He
annihilation and forms the basis for Table III.
To obtain the long-range asymptotic forms shown in Eq. (11), we

expand V in Legendre polynomials (for x > r):

| = AV
V)~ -5 2, (5 R (s)
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Then a particular solution of Eq. (5) is (for x > r)
oo ,
! o AN\D
G==x ZL ) (L LH)Q(C&HZ)) (48)

which 1s the correct asymptotic form of G. By inserting these expressions
into the definitions, Eq. (9), one can carry out the integrations in
spherical coordinates and obtain the leading terms, (in x ') for each

potential. Since V has no long-range ¢ = O term, V. is & ort-ranged.

1

To show that W is also, one notes that Vi x (e + l)PE(cos M =0

for 4 > 0. To illustrate, let us compute the asymptotic form of N:

(A9)

0o ‘ 2 A1
N= &)~ J—ZE;JJA e (145 gcl 27)[f, (ccalz)]z
o 2 2

or

N ~ 43/(83&4)

(A10)
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The expansion can be carried to any desired orvder in g, and represents
an asymptotic expansion, since we have set the upper limit of the integral
equal to o rather than x. Care is required in evaluating the asymptotic
form of Vs since more than one value of g contributes to the same order
in x ', because three Legendre polynomials appear.
The short-range behavior of the potentials (Eq. 10) is due to the

small-g parts of the distortion function G. In Ref. 1. the g - O solution

of Eq. (5) is exhibited. Near x — O it becomes

G~ g—-—/?/ + 77;-13(1'1) [/gn (277) f-Jszi',; - 52-]) (A11)

and

V;G; "~ 4(1—29C)[/€% [Z“f/i) ) "i'_? - 5_1 )

(p12)

Since, for small x, all the integrals have limits of O and «, one finds
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= _EHGY v C[1-2x]) (1)

c

<
f{l

__51__[\4)-«{ 4 .

dax

=
Q
1!

The constant terms in Eq. (Al3) are unaffected by the neglect of
higher g-values, but the second term in N and, hence, the leading

term in VN’ is modified by the 4 — 1 part of the expansion. One finds

G, =~ R () [:L + C("@)J)

(A1k)

and, l\I1 = <Gf> :-“—]5'- X 2. No higher terms contribute to order xz, and

we obtain the results given in Eq. (10). The g — O and g — 1 parts of

V_ can now be found from Eq. (A4k). The result is V_. ~ O and VD

D DO 1

l%

near x — O, and no higher terms contribute.
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Appendix B. Solution of the Scattering Equations

The numerical integration of Eq. (8), in partial wave decomposition,
would be straightforward were it not for difficulties connected with the
asymptotic form of the closed-channel part of the trial function, Eq. (1).
The problem is very similar to those arising in the close-coupling method
with closed chammnels, and our treatment follows the review by Burke and
Smith®? fairly closely.

Since we are dealing here with a set of two coupled second-order
differential equations, four linearly independent solutions can be found,
with each solution consisting of a pair of functions (x, F). We will
see later that only two of these solutions are sufficiently regular at
x — O to be admissable. The general solution of Eq. (8) is thus a
linear combination of these two solutions, and our problem is to determine
such a combination which is sufficiently regular as X — . Making partial

wave expansions as follows

(fx.\ = L/ (=) P(CC{" 9)
Fx)= > 9.0 P (core), a

one can write the partial wave equivalent of Eqg. (8):
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(B2a)

U, + [*Z_L(LH)OC_Z - Vz} L=V, %,

(j” l,g - L(it)c “+N <\/2“\/3‘W+\/”i1‘)} Qe
(B2b)

- / ~1 1
N'Vy 9 = N LU

From Eq. (10) we obtain the dominant terms of the potentials near x — O.
Representing each linearly independent solution as a vector = (U, g),

we find two linearly independent regular solutions near zero:

4@ = (. ,0)

L

q/L(b) (,:I'> - (O} L]_) ,

(B3)

L + 1 [1 + x/(L +1)], plus higher powers of x. Eq. (B2)

where tL
1s numerically integrated, using these starting forms, up to a point

X - X, and the general solution there is

®

b (z), = A v C:n) FBU (@), (51)
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where A, B, are constants to be determined. For large distance
we can re-write Eq. (B2) using the asymptotic expression in Eg. (11).
-3

Retaining terms which fall off less rapidly than x ~ we find

(B5a)

" (B5)

[We will discuss the L = O, k — O case below.] Taking x 2 20 as a

typical "asymptotic'' distance, we see that the x 2 term is not neglibible

for small k(. 0.1) in Eq. (B5a), but is negligible in Eq. (BSb). Of the

four solutions to Eq. (B5), three are weil-behaved for x - ». If we

set U. - O in Eq. (BSb) and neglect x 2 terms, we find that the closed-channel

L
function &r, has two solutions,

St

il

eI'T'OC 1

13 () + % (‘Y/);) ])

(7“ _—/&2]> 7(B6)
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The asymptotic regularity condition, Eq. (2b), requires

S,Ax Q. (x) N() L e, (57)

3/2

and since N ~ x %, e, must increase slower than X for large %
Thus we are forced to drop the rising exponential form S+ of Eq. (B6).
The non-zero linearly independent solutions of Eq. (B5a) are composed

of the spherical Bessel functions:

1

U =x4th=) o

L (B8)
Corresponding to these open-channel solutions one finds a slowly
converging 28 geries of inverse powers for gr,- The three solutions
for large X are thus:

(© -

o= (0,5)
i )
) oy *
: x
LPQ_ <}Z) = (_ 4‘-)' Ly R
(B9)

4@ = (2m b,

where



- 4o o

cw b ‘\ c d
ot xE } XM lx——’fxa’ 1
,)Cz . > L : 5

The coefficients in Eq. (Bl10) can be obtained directly by use of
The result for L - O is,

Eq. (B5b) and equating like powers of x

s = ka1 F (2] conkn [0 |
s [43RY, L
h—eondoe 1= 3 (30 | ke B

Eq. (B2) is numerically integrated inward from some

X = X _, using these starting forms, down to the matching point x - X,

where the general solution is




. (L)

| @ NO T
‘%(55)}: C’di (=) + U(” (Oq_tm , dfi(e [ (%).

(B12)

S TC R TS W S
gives four linear equations in the unknowns A, B, C and tan by -
We have tested the stability and consistency of the numerical procedure
by comparing the results obtained for X, = 20, 25, 30 and X = 2, 3, 4,
and find essentially no variation in the phase shifts for L = O (see
Table IV). (An empirical correction for L - 1, obtained from our
previous non-variational work was applied to account for the increase
produced by the long-range x * potential beyond x = 20. TFor very low
energles exact analytic expressions exis‘cz'9 and are superior to our
numerical results)

For L — O and k = O the long-range potential V- is not negligible in

Eq. (B2a), even for x 2 20, so it is not correct to use the asymptotic

form Eq. (B5a). Instead, one has

il
U :—'OL‘ %0

2x4 (B13a)
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ji A4 /___3_9_
Yo - x Je 432 (B13b)

Solution ¢O(c) is unchanged from the form given in Egs. (B9) and (B6),

but the other two asymptotic solutions are now

d) q 25%
= (xmam s TaE ),

(e) (1_ 2, 1- 3 ) (B14)

and the linear combination shown in Eq. (B12) is unchanged except that

tan 50 is replaced by the scattering length a.
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TABLE T.

1
2(L-2) 1
X

||

[e)

.207
L1(-1)
66
-49(-2)
.89
.61(-3)
.3k
.39(-k)
.02

.09
43(-5)
.90(-6)
-53(-T)
.38(-8)
54(-9)

-Vo

6.96(-1)

2.34
1.4
8.48(-2)
5.14
3.1k

1

1.25
8.19(-3)

2.03
1.17
7.18(-k)
4L.67

(3

H
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Va

.229
57(-1)
Lo(-2)
-99
.32
.18
.29
.20(-3)
o1
11
23(-4)
.00
.18(-5)
.91
.31

Numerical values for the potentials

using the complete form of G in elliptical coordinates.

3/L

.38(-1)
.13
.89
.20
.73(-2)
.96
.19
.06
.36
.12(-3)
43
.36
37
L7 (k)
.52

defined in Eq. (9), evaluated

1
6.84(-2)
L.L1
2.80
1.77
1.11

7.04(-3)

7.00(-k)
3.83

2.2h

exponents appear in parenthesis in the usual way).

6(1 - 2x)

1.913
6.42(-1)
2.62
1.17
5.25(-2)

2.28

.96
.61

Ho W\

(o)}

A43(-L)

1.00

'.-J

.53(-5)
2.31(-6)
3.43(-7)
5.06(-8)

(Negative

.6l(f5)ﬁ5“
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E(ev) A B

0 1.83 3.16
0.54 1.65 2.79
1.22 1.57 2.58
2.17 1.51 2.43
3.40 1.49 2.35
4.90 1.49 2.31
6.66 1.52 2.30
8.70 1.57 2.33
11.0 1.62 2.38
13.6 1.68 2.4
17.8 1.78 2.54

TABLE II. Positron-Helium Annihilation Rate %— Zk Column A
gives the present results, and Column B is the
non~variational result of Ref. 15. The Dirac rate

is% - 1.




TABLE III.
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v - Bx M Y
o 1.67 1
0.5 1.68 1.91
1.0 1.83 2.78
1.5 2.13 3.50
2.0 2.55 L.o7
2.5 3.07 4.53
3.0 3.66 4,92
3.5 k.29 5.25
L.o k.90 5.55
4.5 5.47 5.82
5.0 5.97 6.06

o Helium annihilation.

Correlation functions for e
M is used in the present work and is defined in Eq. (28).
Y = [1 4+ 6(x, 5)]2 4 <G®> is used analogously in the

non-variational work (Ref. 15), and employs full monopole

suppression in G.
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tan § (k = 0.1)

X xo - 20 xo ~ 25 xo - 30
2 0.1275% 0.12804 0.12808
3 0.12747 0.12798 0.12803
4 0.12675 0.12726 0.12731
tan § (k = 0.7)
x X, = 20 X = 25 x, = 30
2 -0.07393% -0.07386 -0.07383
3 -0.07396 -0.07389 -0.07386
4 -0.07440 -0.07433 -0.07430

TABLE IV. S-wave et - H results. The sensitivity of tan § to
matching radius (X) and asymptotic radius (xo) is shown,

for two values of positron momentum k.
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k tan § tan §_ tan g Q Qs
0 -1.85 -2.10 0.582 0.91
0.1 0.128 0.152 -0.0%8 0.89
0.2 0.158 0.190 -0.116 0.90 Q.87
0.3 0.135 0.170 -0.170 0.90
0.4 0.089 0.121 -0.222 0.91 0.89
0.5 0.03k4 0.062 -0.270 0.92
0.6  -0.022 0.007 -0.314 0.91 0.89
0.7 -0.074 -0.054 -0.35k 0.93

TABLE V. S-vave e* - H scattering results. The entries without
subscripts refer to the present work, and are averages over X.
The other phase shifts are: & — Schwartz (Ref. 6); by —Hartree;
and 5HS_.Hahn and Spruch (Ref. 16). The figure of merit Q is

defined in the text. For k - O, scattering lengths are given.
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k tan § tan gy tan & Q
0 -0.511 0.420 -0.659 0.86
0.1 0.036 -0.042 0.050 0.85
0.2 0.047 -0.083 0.072 0.84
0.3 0.039 -0.124 0.071 0.84
0.4 0.020 -0.163 0.056 0.84
0.5 -0.007 -0.203 0.03%2 0.83
0.6 -0.039 -0.240 0.002 0.83
0.7 -0.073 -0.278 -0.031 0.83
0.8 -0.107 -0.313 -0.066 0.83
0.9 -0.142 -0.346 -0.100 0.83
1.0 -0.176 -0.379 -0.134 0.83
1.1 -0.208 -0.409 -0.168 0.83
1.145 -0.223 -0.423 -0.182 0.83

TABLE VI. S-wave e’ - He scattering results. The entries without
subscripts refer to the present work and are averages over X.
The other phase shifts are: 5H - Hartree; GNV - nonvariational
(Ref. 2). For k = O, scattering lengths are given. Q is

computed assuming 6NV to be exact.
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k tan §, tan 6, (LB) tan §, (ext)
0.1 0.0073(1) 0.0082 0.0086(1)
0.2 0.0263(2) 0.0289 0.032(1)
0.3 0.0518(5) 0.0548 0.066(4)

0.4 0.0764(9) 0.0801 0.11(1)

0.5 0.0952(14) 0.0994 0.14(1)

0.6 0.106(2) 0.112 0.17(2)

0.7 0.109(2) 0.119 0.19(2)

TABLE VII. P-wave e’ - H scattering results. The present results
(corrected for long-range effects as described in
Appendix B) are compared with the lower bounds (LB)

and extrapolated values (ext), obtained in Ref. 21.

The estimatederror in the last digit is shown in

parenthesis.
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Figure Caption

Figure 1.

Zero-energy scattering solutions for et - H. The
functions X and F are open-channel and closed-channel
functions, and T — F/X is the suppression factor. The
asymptotic normalization is X =1 - a/x, F_X and

T . 1.
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